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 MANIPULATION OF VOTING SCHEMES: A GENERAL RESULT

 BY ALLAN GIBBARD

 It has been conjectured that no system of voting can preclude strategic voting-the

 securing by a voter of an outcome he prefers through misrepresentation of his preferences.
 In this paper, for all significant systems of voting in which chance plays no role, the con-
 jecture is verified. To prove the conjecture, a more general theorem in game theory is
 proved: a gameform is a game without utilities attached to outcomes; only a trivial game
 form, it is shown, can guarantee that whatever the utilities of the players may be, each
 player will have a dominant pure strategy.

 1. INTRODUCTION

 I SHALL PROVE in this paper that any non-dictatorial voting scheme with at least

 three possible outcomes is subject to individual manipulation. By a "voting
 scheme," I mean any scheme which makes a community's choice depend entirely

 on individuals' professed preferences among the alternatives. An individual

 "manipulates" the voting scheme if, by misrepresenting his preferences, he secures

 an outcome he prefers to the "honest" outcome-the choice the community would
 make if he expressed his true preferences.

 The result on voting schemes follows from a theorem I shall prove which covers

 schemes of a more general kind. Let a gameform be any scheme which makes an

 outcome depend on individual actions of some specified sort, which I shall call
 strategies. A voting scheme, then, is a game form in which a strategy is a profession

 of preferences, but many game forms are not voting schemes. Call a strategy
 dominant for someone if, whatever anyone else does, it achieves his goals at least
 as well as would any alternative strategy. Only trivial game forms, I shall show,
 ensure that each individual, no matter what his preferences are, will have available
 a dominant strategy. Hence in particular, no non-trivial voting scheme guarantees
 that honest expression of preferences is a dominant strategy. These results are
 spelled out and proved in Section 3.

 The theorems in this paper should come as no surprise. It is well-known that

 many voting schemes in common use are subject to individual manipulation.
 Consider a "rank-order" voting scheme: each voter reports his preferences among
 the alternatives by ranking them on a ballot; first place on a ballot gives an alterna-

 tive four votes, second place three, third place two, and fourth place one. The
 alternative with the greatest total number of votes wins. Here is a case in which
 an individual can manipulate the scheme. There are three voters and four
 alternatives; voter a ranks the alternatives in order xyzw on his ballot; voter b in
 order wxyz; and voter c's true preference ordering is wxyz. If c votes honestly, then,
 the winner is his second choice, x, with ten points. If c pretends that x is his last
 choice by giving his preference ordering as wyzx, then x gets only eight points, and
 c's first choice, w, wins with nine points. Thus c does best to misrepresent his
 preferences.
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 588 ALLAN GIBBARD

 Since many voting schemes in common use are known to be subject to
 manipulation, writers on the subject have conjectured, in effect, that all voting
 schemes are manipulable. Dummett and Farquharson define "voting procedure"
 roughly as "voting scheme" is defined here, and remark, "It seems unlikely that
 there is any voting procedure in which it can never be advantageous for any voter
 to vote 'strategically,' i.e., non-sincerely" [3, p. 34]. The definition of manipulability
 used here is roughly that originated by Dummett and Farquharson. The result
 they prove, however, applies only to a special class of voting schemes which they
 call "majority games," not to voting schemes in general.

 Vickrey [5, p. 518] makes a related conjecture on manipulability. He conjectures
 that immunity to manipulation is equivalent to the conjunction of two of the
 conditions' that figure in the Arrow impossibility theorem [1]. Arrow's conditions
 are jointly inconsistent, and hence from Vickrey's conjecture, it would follow that a
 scheme satisfying the remaining Arrow conditions is manipulable-almost the
 result in this paper. Indeed the proof in this paper proceeds roughly by confirming
 Vickrey's conjecture.

 A result such as the one given here, then, was to be expected. It does not, how-
 ever, turn out to be easy to prove from known results: the proof given here relies
 on the Arrow impossibility theorem, but not in a simple way. I leave the statement
 and proof of the results in this paper until later; first, informal elucidation.

 2. MANIPULABILITY IN THE WORLD

 A way of making decisions can be represented by a variety of mathematical
 structures. In the next part, theorems are proved about structures of two kinds,
 called "game forms" and "voting schemes." In this part, I shall argue that the game
 form and the voting scheme that represent a decision-making system pick out the
 aspects of the system pertinent to its manipulability.

 First, then, let us provide definitions of "voting scheme" and "game form." A

 voting scheme is a formula. by which individual preferences among alternatives
 completely determine a community choice, or "outcome." A voting scheme, then,
 is a function of the following sort. Let there be n voters, and let Z be the set of
 alternatives open to society. Call an ordering of Z a preference ordering, and an
 n-tuple of preference orderings a preference n-tuple. ("Orderings" in ikhis paper
 allow ties.) A preference ordering is thus an individual's account of his preferences
 among available alternatives, and a preference n-tuple consists of a profession of
 preferences from each individual. A voting scheme is a function which assigns a
 member of Z to each possible preference n-tuple for a given number n and set Z.

 A voting scheme is a special case of what I shall call a "game form," and the
 theorem on voting schemes is a special case of a general result about game forms
 which I shall give. A game form, as I shall explain, is a system which allows each
 individual his choice among a set of strategies, and makes an outcome depend, in
 a determinate way, on the strategy each individual chooses. A "strategy" here is
 the same as a pure strategy in game theory, and indeed a game form is a game with

 1 Independence of irrelevant alternatives and positive association, which Vickrey calls non-perversity.
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 VOTING SCHEMES 589

 no individual utilities yet attached to the possible outcomes. Formally, then, a
 gameJorm is a function g with a domain of the following sort. To each player 1 to
 n is assigned a non-empty set, S,... ., Sn respectively, of strategies. It does not
 matter, for purposes of the definition, what a strategy is. The domain of the function

 g consists of all n-tuples <s1, ... , sn>, where s1 E S1,s2 E S2 ... . sn E Sn. The values
 of the function g are called outcomes. A voting scheme, it follows, is a game form
 such that, for each player, his set of strategies is the set of all orderings of a set Z of
 available alternatives, where Z includes the set X of outcomes.

 Voting schemes and game forms are mathematical structures used to represent

 flesh and blood systems of decision making which might be instituted. They
 represent decision-making systems which leave nothing to chance, but let the
 choice a community makes depend solely on what its members do. Other struc-
 tures could be used for the same purpose, but here, voting schemes and game forms
 are especially apt: each, I shall argue, applies to a wide range of non-chance
 decision-making systems, and each picks out certain aspects of a system which
 pertain to manipulability.

 Game forms apply to the widest range of decision-making systems, and apply to
 each in a clear-cut way. Every non-chance procedure by which individual choices
 of contingency plans for action determine an outcome is characterized by a game
 form. Game forms, then, characterize any non-chance procedure we would consider
 voting. In representing a system as a game form, each possible way of voting counts
 as a strategy. In single-ballot voting of any sort, for instance, a strategy would
 consist of a way of marking the ballot. In sequential voting, a strategy is a way of
 marking each ballot on the basis of what has gone before. For any such system, it
 is clear what constitutes a strategy, and what each combination of strategies has
 as its outcome. It is clear, then, what game form characterizes the system.

 For game forms alone, however, there is no such thing as manipulation. To
 manipulate a system, a voter must misrepresent his preferences. Nothing in the
 structure of a game form tells us what strategy "honestly" represents any given
 preference ordering, and hence which strategies would misrepresent it. To talk of
 manipulation, then, we must specify not only a game form, but for each voter and
 preference ordering P, we must specify the strategy which "honestly represents"
 P. Only then can we apply the definition of manipulation as securing an outcome
 one prefers by selecting a strategy other than the one that honestly represents
 one's preferences.

 Manipulability, then, is a property of a game form g(s1, ... , sn) plus n functions
 O1 .... 0 n, where for each individual k and preference ordering P, uk(P) is the
 strategy for k which honestly represents P. Formally, then, where Z is the set of all

 alternatives open to the community, each Sk is a function whose arguments are all
 orderings of Z and whose values are strategies open to k. Manipulability is a

 property of a game form in conjunction with an n-tuple <a1,.. .,n> of such
 functions.

 Where a decision-making system is characterized by functions g, a, . . ., an as
 I have indicated, it is characterized by a voting scheme,

 V(Pl, . . ., Pn) = g(a1(P1), ) - . , Cn(Pn))-
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 590 ALLAN GIBBARD

 For each n-tuple <P1,.. ., Pa>, v(P1, .. ., Pn) is the outcome if individuals 1,... n,n
 honestly profess preference orderings Pl, . . ., Pn respectively. Whereas manipul-
 ability is not a property of a game form alone, it is a property of a voting scheme

 alone. Voting scheme v is manipulable if for some k and preference n-tuples

 <P1,..., Pn > and <Pg, . . , Pn>, Pi = P' except when i = k, and

 VW' P.. Pn) k V(Pl, - I n

 For, then, if Pk is k's real preference ordering, given the way the others vote, k

 prefers the result of expressing preference ordering Pk' to that of expressing Pk.
 Note that to call a voting scheme manipulable is not to say that, given the actual

 circumstances, someone really is in a position to manipulate it. It is merely to say

 that, given some possible circumstances, someone could manipulate it. A voting

 scheme is manipulable, then, unless its structure guarantees that no matter bow
 each person votes, no one will ever be in a position to manipulate the scheme.

 Manipulability pertains to voting schemes, and in that sense, then, a voting
 scheme picks out the aspects of a decision-making system which pertain to

 manipulation. In some cases, however, it will not be clear what voting scheme
 characterizes a given decision-making system. It will be clear enough what game
 form characterizes it, but the voting scheme which characterizes it is derived from

 the game form by means of the functions o,,. . ., an . What are we to make of these
 functions? They characterize "honest" voting, I have said. That makes sense as

 long as for each individual k and preference ordering P, it is clear what strategy
 for k "honestly expresses" P. For many systems of voting, however, it is not always
 clear what constitutes honesty. A system may give no single clear way to express
 certain preference orderings.

 Suppose, for instance, a club is to vote first on whether to have a party, and then,
 if the motion to have a party carries, on whether to make it alcoholic. What

 strategy would count as expressing the following preference ordering: a non-
 alcoholic party first, no party at all second, and an alcoholic party last? It is not at
 all clear. Hence, although it is clear what game form characterizes the system, it is
 not at all clear what voting scheme, if any, characterizes it. Manipulability is most
 clearly a property of voting schemes, but many real systems of voting are not
 clearly characterized by any one voting scheme.

 In short, then, game forms are more versatile but manipulability pertains more

 directly to voting schemes. Any non-chance system of decision making is
 characterized by a game form in a clear-cut way, but manipulability is not a
 property of game forms alone. It is rather a property of a game form plus the

 functions 1,,. . ., an which characterize honest voting. Equivalently, it is a property
 of the voting scheme defined from the game form g and a 1, . , an Unless, however,
 the system prescribes for each preference ordering a way to express it, the choice

 of functions 1, . . ., an to characterize honest expression of preferences will be to
 some degree arbitrary. Hence the choice of a voting scheme to characterize the
 system will be to some degree arbitrary. Game forms most clearly characterize
 decision-making systems, but manipulation pertains to voting schemes.
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 VOTING SCHEMES 591

 The moral, of course, is that unless a decision-making system prescribes clearly

 how each voter is honestly to express each possible preference ordering, manipula-

 tion of the system is an unclear notion. A voter manipulates the system if, by
 misrepresenting his preferences, he secures an outcome he prefers. Unless we have

 clear standards of honest representation and hence of misrepresentation,
 manipulation makes no clear sense.

 Even so, we can prove a general result on the manipulability of decision-making

 systems, and do so either in terms of game forms or of voting schemes. What we

 can show is this: however we characterize honest voting in a system, the system as

 we characterize it will be manipulable. All non-trivial voting schemes are

 manipulable, so that no matter what voting scheme we choose to characterize a

 system, the system, as characterized, will be manipulable. Whatever functions

 a1, . . . ,a,, we choose to characterize honest voting, honesty will not always be the
 best policy. The only exceptions are trivial systems-dictatorial systems and
 systems with no more than two outcomes.

 Here is the result put in terms of game forms. A strategy s* is dominant for player

 k and preference ordering P of the set of outcomes if, for each fixed assignment of
 strategies to players other than k, strategy s* for k produces an outcome at least as

 high in preference ordering P as does any other strategy open to k. For player 1,
 for instance, s* is dominant for P if there is no strategy n-tuple <s,... s, Sn> such
 that

 g(S 1 S2 ** S.) P g(s*, S2 ** S.).

 A game form is straightforward if for every player k and preference ordering P of
 the outcomes, some strategy is dominant for k and P. The theorem on game forms
 says that no non-trivial game form is straightforward.

 From that the result put in terms of voting schemes follows. The argument is

 given in Section 3 in the proof of the corollary. A voting scheme, as I have said, is
 a game form of a special kind, in which the strategies are preference orderings of

 the alternatives. Now take a voting scheme, and take a voter k and preference
 ordering P for which no strategy is dominant. Then in particular, honest voting is
 not a dominant strategy for k and P. Thus if P is k's real preference ordering, then
 given some possible way the others might vote, k does best to misrepresent his
 preferences. The voting scheme is therefore manipulable. The result on manipul-
 ability, then, can be put in terms either of game forms or of voting schemes, and the
 result put in terms of voting schemes follows from the result put in terms of game
 forms.

 Some further comments on voting schemes. They characterize a large variety of
 systems. A voting scheme need in no way be democratic, and it need not guarantee
 that all individuals count alike. Some voting schemes represent dictatorships,
 some oligarchies, and some democracies. Nor must a voting scheme treat all

 alternatives in the same way. A voting scheme might, for instance, allow Jones a
 special say on what groceries get delivered to him. It might also rule out duels even
 if everyone wanted one to be fought. Some voting schemes treat all alternatives
 alike; others do not.
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 592 ALLAN GIBBARD

 A voting scheme must assign an outcome to every preference n-tuple, not just

 to some. Murakami [4, pp. 75-77] discusses group manipulability of structures
 which do not meet this condition, but as far as I can see, doing so makes no sense.
 However people vote, something will happen. If some preference n-tuples lead to

 stalemate and inaction, then inaction is a possible outcome. If someone prefers
 inaction to the outcome he would secure with honest voting, and he can secure
 inaction by misrepresenting his preferences, the system is manipulable. Stalemate

 must be counted as an outcome, and so in discussing manipulability, we should

 consider a function which assigns a value to every preference n-tuple and not just
 to some.

 Finally, neither voting schemes nor game forms allow ties. Both take single

 outcomes as values, and for good reason. In questions of manipulability, the final
 outcome is what matters; manipulation, after all, is a way of securing a final out-
 come one prefers. Here we are considering decision-making systems in which
 chance plays no part, and to display manipulation of such a system, we need
 functions whose values are definite final outcomes.

 In this respect, a voting scheme differs from an Arrow "constitution" [2], which
 it resembles in most other respects. Both a constitution and a voting scheme take
 preference n-tuples as arguments, but whereas to each preference n-tuple a voting

 scheme assigns a single alternative, a constitution assigns a choice function-a
 function which, for each non-empty set of alternatives, chooses a non-empty subset.
 Now this subset may have more than one member. Some constitutions, then, allow
 ties.

 Voting schemes rule out ties, for in systems which leave nothing to chance, ties
 make no sense. A voter misrepresents his preferences in order to secure a decision
 he prefers, and in the end only one alternative is chosen. In a non-chance decision-
 making system, it does a voter no good to have an alternative he likes tie for
 winning place if some other alternative tied with it is actually chosen.2 To
 investigate manipulability, we must consider the entire system by which the choice
 is made, including the system for breaking any ties which may develop. That means

 considering a system which results in a single choice. Voting schemes and game
 forms, then, suit the present purpose; some Arrow constitutions do not.

 Suppose, though, a system breaks ties by chance. Game forms and voting
 schemes, I have said, characterize only non-chance decision-making systems. What
 can we say about the manipulability of systems which make an outcome depend
 partly on preferences but also partly on chance?

 A system which broke ties by chance would not be a voting scheme. It would
 assign to each preference n-tuple not an outcome, but a lottery among possible
 outcomes. We might call it a "'mixed decision scheme." Let a prospect be an
 assignment to alternatives of probabilities which total one. Then a mixed decision
 scheme is a function which assigns a prospect to each preference n-tuple.

 Just as we can talk about the manipulability of a voting scheme, we can talk
 about the manipulability of a mixed decision scheme. Call a mixed decision scheme

 2 Vickrey [5, p. 508] makes roughly the same point.
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 VOTING SCHEMES 593

 manipulable unless it is the case that, whenever everyone expresses his preferences
 honestly in an election, the scheme assigns to that election a prospect each voter
 likes as well as any prospect he could have secured by misrepresenting his
 preferences, given the actual votes of everyone else. Whereas, with trivial excep-
 tions, all voting schemes are manipulable, it is easy to find a mixed decision scheme
 which is not manipulable. Take the scheme which assigns to each alternative the
 fraction of voters for whom it is a first choice. In other words, each voter writes his
 first choice on a ballot; a single ballot is drawn at random; and the choice on that
 ballot is selected. A voter then has every incentive to give his true first choice. If
 his ballot is not drawn, it makes no difference how he votes, whereas if his ballot
 is drawn, the voter gets his true first choice if and only if he puts it as first choice
 on his ballot. His second and lower choices do not matter, for only the choice on
 the ballot can affect the outcome. Hence the system is not manipulable, and we
 have established the existence of a mixed decision scheme which is not manipul-
 able, not dictatorial, and can allow a large number of possible outcomes.

 That leaves the question of whether any non-manipulable mixed decision
 schemes are attractive. Exactly what is required for a scheme to be "attractive," I
 cannot specify. Clearly, though, the scheme I have presented is unattractive; it
 leaves too much to chance. On the other hand, a system which allowed only
 occasional ties to be broken by chance might be quite attractive. Work needs to
 be done on mixed decision schemes. It would be good to identify properties which
 would make a mixed decision scheme attractive, and to have theorems on the
 manipulability of classes of mixed decision schemes which, by various criteria, are
 attractive. No such work is attempted in this paper.

 I have argued, then, that in discussing manipulability of systems which leave
 nothing to chance, we must consider functions whose values are single outcomes-
 voting schemes or game forms. For systems with an element of chance, we must
 consider functions whose values are prospects-mixed decision schemes. There
 exists a non-manipulable mixed decision scheme, but whether any non-manipul-
 able mixed decision schemes are attractive in any way remains to be seen.

 Back, then, to the topic of this paper: voting schemes which leave nothing to
 chance. Every voting scheme is dictatorial, limited to one or two possible out-
 comes, or subject to manipulation. Why should that matter? It means that no
 system of decision making but a trivial one can depend on informed self-interest
 to make outcomes a function of true preferences. If a system does make outcomes
 a function of preferences, it is in virtue of individual integrity, ignorance, or stupid-
 ity, or because preferences are sufficiently predictable that the system does not have
 to accommodate all possible patterns of preferences. For suppose a system
 accommodates all possible preference patterns, and makes outcomes a function of
 preferences. Then where v is that function, v is a voting scheme, and unless trivial,
 is manipulable. Hence for some k and P1, . . ., P, let x = v(P1, . . ., Pn). Then for
 some y, y Pk x, but given the preferences of everyone else, for some Pk, if k's
 preference ordering were Pk, the outcome would be y. Thus if k acted as if his
 preference ordering were Pk, the outcome would be y, which would be more to
 his liking than the outcome he actually secures. The way k actually acts, given his
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 594 ALLAN GIBBARD

 preferences, is not the way which best promotes k's interests. The way k acts, then,

 must depend on something other than informed self-interest-perhaps ignorance,
 integrity, or stupidity. No straightforward appeal to informed self-interest can

 make the outcome a non-trivial function of preferences regardless of what those
 preferences are.

 I have argued, then, that game forms'and voting schemes are the best subjects

 for manipulability theorems on non-chance systems of decision-making, and that

 the theorems proved here have regrettable consequences.

 3. MANIPULABILITY THEOREMS AND PROOFS

 The results and proofs which follow are self-contained.

 A game form is characterized by:

 (i) A set X, whose members are called possible outcomes, or simply outcomes.

 Unless otherwise stated, variables x, y, and z will range over outcomes.
 (ii) A positive integer n, called the number of players. The n players will be

 denoted by the integers 1 to n, and variables i,j, and k will range over these integers.

 (iii) n sets Si, one for each i. For each i the members of Si are called strategies
 for i. The word "strategy," then, refers here to what in game theory is usually called

 a "pure strategy." An n-tuple <s,. .. , sn>, with s1 E S1, ... , sn E Sn will be called a
 strategy n-tuple. Strategy n-tuples will be indicated by bold-face small letters on

 the pattern s = <s1,... , se>, s' = <s'1,.. I, s'>, and so forth.
 (iv) A function g, defined for every strategy n-tuple, whose range is X.

 Strictly speaking, a game form is simply a function g which can be characterized
 as above. We can define a game form, then, as a function whose domain is the

 Cartesian product S1 X ... X Sn of a finite number of finite non-empty sets. Its
 values are called outcomes, its arguments are called strategy n-tuples, and a member

 of a set Si is called a strategy for i.
 We now define what it is for a game form g to be straightforward. An ordering

 of a set Z is a two-place relation P between members of Z, such that for all x, y,
 and z in Z,

 (la) - (x P y & y P x),

 (Ib) xPz-(xPy V yPz).

 A preference ordering is an ordering of X, the set of outcomes. The variable P then
 means "is preferred to." Distinct x and y may be indifferent under ordering P; if

 so, neither x P y nor y P x.
 Now we will explain some matters of notation. In the first place, for any two-

 place relation P between members of X, x R y will mean - y P x, and x I y will

 mean x P y & - y P x. Thus if P is a preference ordering, P indicates strict
 preference, I indifference, and R preference or indifference. On the same pattern,

 x R' y will mean - y P' x, x Rk y will mean - y Pk x, and so forth. Likewise x I' y

 will mean '-x P'y & - y P' x, x Ii y will mean -x Pi y & -y Pi x, and so forth. In
 the second place, for any n-tuple indicated by boldface type, the result of altering
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 VOTING SCHEMES 595

 its kth place will be indicated by a symbol on the following pattern. Where

 S = <S1, I Sn>.

 we have

 sk/t = <S1, . . 1 d , Sk+ 1, Sn>

 In other words, s' = sk/t iff s' = t and

 (Vi) [i ? k -+s' = si]
 Where P is a preference ordering, a strategy t is P-dominant for k if for every

 strategy n-tuple s, g(sk/t)Rg(s). In other words, t is P-dominant for k iff no matter

 what strategies are fixed for everyone else, strategy t for k produces an outcome at

 least as high in preference ordering P as does any other. A game form is straight-
 forward if, for every preference ordering P and player k, there is a strategy which
 is P-dominant for k.

 A player k is a dictator for game form g if, for every outcome x, there is a
 strategy s(x) for k such that g(s) = x whenever Sk = s(x). A game form g is dictatorial

 if there is a dictator for g.

 THEOREM: Every straightforward gameform with at least three possible outcomes
 is dictatorial.

 Before proceeding with the proof, we present a corollary.

 A voting scheme is a game form v such that for some set Z with X c Z, the set
 Si of strategies open to each player i is the set of orderings of Z. A voting scheme is
 manipulable if for some k, for some n-tuple P of orderings of Z, and for some

 ordering P* of Z, v(P) P* v(Pk/P*).

 COROLLARY: Every voting scheme with at least three outcomes is either dictatorial

 or manipulable.

 PROOF (from the principal theorem): Suppose v is non-dictatorial and has at

 least three possible outcomes. Then, since v is a game form, v is not straight-
 forward, and thus for some k and P, no strategy is P-dominant for k. P here is an
 ordering of X, the set of outcomes, and a strategy is an ordering P* of the set Z of
 alternatives, with X c Z. Let P* extend P to Z, so that for all x and y in X,

 (2) xP*y',+ xPY.

 Then, in particular, P* is not P-dominant for k. Hence for some strategy n-tuple

 P of orderings of Z, it is not the case that v(Pk/P*) Rv(P), and so v(P) P v(Pk/P*).
 But since v(P) E X and v(Pk/P*) E X, from (2), v(P) P* v(Pk/P*), and v is manipul-
 able. Assuming the main theorem, we have proved the corollary.

 Back, now, to the main theorem. We prove it by means of the Arrow impossibility
 theorem, which I shall now state. A preference n-tuple over a set X is an n-tuple
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 596 ALLAN GIBBARD

 <P1, .i. , P > whose terms are preference orderings of X. Preference n-tuples will
 be designated in bold-face type on the pattern P = <P1,... Pa>, P' = <P1,... ,>
 and so forth. A social welfare function is a function whose arguments, for some

 fixed n and X, are all preference n-tuples P over X, and whose values are preference

 orderings of X. Arrow [1] showed that every social welfare function violates at

 least one of the following Arrow conditions.

 Scope: X has at least three members.

 Unanimity: If P = f(P) and (Vi) x Pi y, then x P y.
 Pairwise Determination:3 If

 (Vi)[xPiy xPiY],

 (Vi) [y Pi X y P' x],

 P =f(P),

 P, = f(P),

 then

 x P y + x P'y.

 Non-dictatorship: There is no dictator for f, where a dictator for f is a k such
 that for every P, x, and y, if x Pk y and P = f(P), then x P y.

 The proof of the theorem on straightforwardness takes up the remainder of the

 paper. Let g be a straightforward game form, fixed for the entire proof, with at
 least three outcomes. We must prove g dictatorial.

 Since g is straightforward, for every i and P, there is a strategy s which is

 P-dominant for i. For each i, let vi be a function such that for every P, strategy
 vi(P) is P-dominant for i. For each preference n-tuple P, let

 5(P) = <KU(P1), . .,,(P)>

 The functions a and ,, ... , o, will be fixed throughout the proof; v will be the
 composition of g and a, so that for all P, v(P) = g(a(P)).

 We now use v to generate from each preference n-tuple P a two-place relation
 f (P) which turns out to be an ordering. The function f so defined is thus an Arrow
 social welfare function. We shall show that f satisfies all the Arrow conditions
 except non-dictatorship, and is therefore dictatorial. From this it will follow that
 g is dictatorial. Hence any straightforward game form with at least three outcomes
 is dictatorial.

 A chain ordering is an ordering in which no distinct items are indifferent: P is a
 chain ordering iff

 (Vx) (Vy) [x I y -+x = y].

 Let Q be a chain ordering of X, fixed for the entire proof. We let preference n-tuple

 P determine a two-place relation between members of X in the following way.

 ' Arrow gives an equivalent condition, the independence of irrelevant alternatives, but in effect uses
 the condition given here in the proof of his theorem.
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 VOTING SCHEMES 597

 Let Z c X. For each i, we derive a chain ordering Pi * Z of X from the ordering
 Pi by moving the members of Z to the top, preserving their ordering with respect
 to each other except in case of ties, and otherwise ordering everything according to
 Q. In other words, for each pair of alternatives x and y,

 (3a) If xeZandyeZ,thenx(Pi *Z)yiffeitherxPiyorbothxIiyandxQy.

 (3b) If xeZ and y Z, then x(Pi *Z)y.

 (3c) Ifx0Zandy0Z,thenx(P1*Z)yiffxQy.

 For each i we have defined a two-place relation Pi * Z between members of X.
 Let

 p * Z = <Pi * Z,., Pn *Z>

 The following features of the * operator follow easily from (3a)-(3c). (i) For
 each i, Pi * Z is a chain ordering. (ii) If Y c Z, then (P * Z) * Y = P * Y. (iii) Sup-
 pose P and P' agree on Z; that is, suppose

 (Vi)(Vx)(Vy) [(X E Z & y E Z) -+ (x Pi Y -+ x Pi Y)].

 Then P * Z = P' * Z. Features (i)-(iii) will be cited at later points in the proof.
 Now let xPy be the relation

 x * y & x = v(P * {x, y}).

 We have defined a two-place relation P as a function of P, and we shall call that
 function f, so that P = f (P). We shall show in the following three assertions that
 f is an Arrow social welfare function which satisfies the Arrow conditions other
 than non-dictatorship.

 In what follows, P means f(P), P' means f(P'), and so forth. Also, xRy means
 -y P x, and so

 xRy?-*[x = y V y * v(P* {x,y})].

 Hence, (iv) if x P y, then x R y.

 As a first step in showing that f satisfies the Arrow conditions, note that f
 satisfies the Arrow condition of pairwise determination.

 (v) Suppose

 (Vi)[xPiyYXxPiY],

 (Vi)[yPix?YyPiX]

 Then x P y + x P' y.
 For then from (iii), P * {x, y} = P' * {x, y}, and hence

 xev(P * {x,y})?-*xev(P' * {x,y}),

 which is to say x P y *-+ x P'y.

 Assertion 1, which follows, is used in a number of ways throughout the rest of
 the proof of the theorem. It says, in effect, that if y R x, and nobody is indifferent
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 598 ALLAN GIBBARD

 between x and y, then given the strategies of those who prefer y to x, those who
 prefer x to y could not, whatever their strategies, get x chosen.

 ASSERTION 1: Let s = v(P). Suppose for strategy n-tuple s' and alternatives x

 and y, x * y, and

 (4a) (Vi) [y Pi x +s'i = Si]

 (4b) (Vi) - x Ii Y,

 (4c) yRx.

 Then x * g(s').

 PROOF: Suppose on the contrary that x = g(s'). We shall show that for some
 k, uk(Pk) is not Pk-dominant for k, contrary to what has been stipulated for Sk.
 Let P* = P * {x, y}, and let strategy n-tuple t = u(P*). Then y R x means

 x = y V x + v(P*),

 and since x * y and v(P*) = g(u(P*)) = g(t), we have x * g(t). Now let
 s0, ... I S' be the sequence obtained by starting with s' and at each step k replacing
 Sk with tk. Thus

 s = s,

 S = sk 1 k/tk,

 and in reverse order,

 Sn = t

 k-1 = skk/s.

 In other words, for each k, S is the strategy n-tuple <S k... sk> such that for
 each i,

 (5a) i _< k sik = ti

 (5b) i > k si = s'

 so that

 so KS' ,'2S13,S ...s> S=<1 E 2 E 3 E n>

 S t 2 E 3 In > I

 s= 2 t ,t2s, E I SI>

 and so forth. Since x = g(s') but x 7 g(t), we have x = g(s?) but x 7 g(sn)* Let k be
 the least such that g(sk) 7 x. We shall show that either tk is not Pk-dominant for
 k or Sk is not Pk-dominant for k. Since tk = ak(Pk*), and Sk = ak(pk), in either case
 the original characterization of a is violated. The supposition that x = g(s') is
 therefore false. Consider two cases, jointly exhaustive.
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 VOTING SCHEMES 599

 CASE 1: g(sk) = y and y Pkx.

 Then since g(5k 1) = x, we have g(Sk) kg(Sk -), and since Sk-l = skk/s', it is not
 the case that g(skk/s) Rk g(sk), and thus sk is not Pk-dominant for k. But since
 y Pk x, by (4a), sk = Sk, and Sk is not Pk-dominant for k. But since Sk = Uk(Pk), Sk is
 Pk-dominant for k, and we have a contradiction.

 CASE 2: g(sk) * y or x Pk y.

 Then we always have x P* g(Sk). For if g(sk) = y, then x Pk y, and by (3a) and the

 definition of P*, x P* y. If, instead, g(sk) + y, then since g(sk) * x, we have
 g(sk) 0 {x, y}, and by (3b), again x P* g(sk ). Now x = g(sk ), and sk = sk 'k/tk.
 Hence g(sk ) Pk* g(s k/tk), and tk is not P*-dominant for k. But since tk = Uk(Pk),
 tk is P*-dominant for k, and we have a contradiction. In both Cases 1 and 2, then,
 the supposition that x = g(s') leads to a contradiction. Since by (4b), - x Ik y, the
 two cases exhaust the possibilities. Therefore x * g(s'), and the assertion is proved.

 From Assertion 1, a number of properties of v follow easily.

 COROLLARY 1: If (Vi) x Pi y, then x P y.

 PROOF: Since x is an outcome, for some strategy n-tuple s', x = g(s'). If s = v(P),
 then all the hypotheses of Assertion 1 are satisfied except for (4c), and the
 conclusion of Assertion 1 is violated. Therefore (4c) is false, and x P y.

 COROLLARY 2: If (Vi) - x Ii y and y R x, then v(P) * x.

 PROOF: (4b). and (4c) in Assertion 1 are satisfied. Let s' = s = v(P). Then in

 addition, (4a) is satisfied, and by Assertion 1, g(s') * x. Thus since g(s') = g(&(P))
 = v(P), we have v(P) * x.

 COROLLARY 3: If (Vi) - x Ii y and v(P) = x, then x P y.

 This is the contrapositive of Corollary 2.

 ASSERTION 2: P is a preference ordering.

 P clearly satisfies the condition

 (Vx)(Vy) - (x P y & y P x),

 for x P y means

 x * y&x = v(P* {x,y}),

 and y P x means

 y * x&y = v(P* {x,y}).
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 600 ALLAN GIBBARD

 It remains to show that P satisfies the condition that for all x, y, and z,

 xPz-+ (Vy)(xPj V yPz).

 Let P' = P * {x, y, z}. Then from (ii), P' * {x, z} = P * {x, z}, so that since

 x P z[x7 z &x= v(P *{x,z}) ],

 xP'z< [x 7 z&x = v(P' * {x,z})

 we have

 x P' z x P z.

 Similarly,

 x P' y x P y,

 y P' Z y P z.

 We need only to show, then, that for all x, y, and z,

 xP'z-+(xP'y V yP'z).

 Suppose x P' z. Then x and z are distinct, since x P' z means

 x * z&x = v(P'*{x,z}).

 If y = x, we have y P' z, and if y = z, we have x P' y. There remains the case where
 y * x and y * z. Then by (i) and the definition of P', each P' is a chain ordering,
 and

 (Vi) [-x y & -xI Fz& - yI Fz].

 CASE 1: X = V(P').

 Then by Corollary 3 to Assertion 1, x P' y.

 CASE 2: x * v(P').

 Since x P' z, by Corollary 2 to Assertion 1, z * v(P'). If w 0 {x, y, z}, then by (3b)
 and the definition of P', (Vi) x P' w. Hence by Corollary 1 to Assertion 1, x P' w,
 and by Corollary 2, w * v(P'). We have, then, x * v(P'), z * v(P'), and if
 w 0 {x, y, z}, then w * v(P'). Thus by elimination, y = v(P'), and by Corollary 3
 to Assertion 1, y P' z. From x P' z, we have shown that in Case 1, x P' y, and in Case
 2, y P' z. This, as we said, suffices to show that P is an ordering, and the assertion
 is proved.

 ASSERTION 3: If g has at least three possible outcomes, then f violates the Arrow
 condition of non-dictatorship.

 That is, there is an individual k, called the dictator for f, such that for every
 preference n-tuple P and every x and y, x Pk y -+ x P y.
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 VOTING SCHEMES 601

 PROOF: Since by Assertion 2, the values of f are preference orderings, f is an
 Arrow social welfare function. We have shown that f satisfies all of the Arrow
 conditions but non-dictatorship. In the first place, since every outcome of g is an

 outcome of v, scope holds. By (v),f satisfies pairwise determination, and by Corollary
 1 to Assertion 1, f satisfies unaminity. Therefore, since the Arrow theorem says

 that no social welfare function satisfies all four Arrow conditions, f violates non-
 dictatorship.

 It remains to show that since f violates the Arrow condition of non-dictatorship,

 g is dictatorial.

 ASSERTION 4: The dictatorforf is dictatorfor g.

 PROOF: Let k be dictator for f. Then k is dictator for g if for every outcome y,
 there is a strategy s(y) for k such that

 (6) (Vs') [sk = s(y) -+ g(s') = y].

 Let Py be any ordering such that (Vx) [x + y -+ y Py x] and let s(y) = Gk(PY). We
 appeal to Assertion 1 to show that this s(y) satisfies (6).

 Let s' be such that s' = s(y), and suppose x + y. Then by the way Py was
 characterized, y Py x. We shall show that g(s') + x. Let P be any preference
 n-tuple such that

 (7a) Pk = P,

 (7b) (Vi) [i :& k -+x Pi Y],

 and let s = ((P). Then Sk = uk(Pk) = ak(Py) = s(y) = sk. Thus since by (7b), only
 k prefers y to x, (4a) is satisfied, and since in addition, y Py x and hence by (7a)

 y Pk x, (4b) is satisfied also. Since y Pk x and k is dictator for f, we have y P x, and
 (4c) is satisfied. Therefore by Assertion 1, x * g(s'). We have shown that if x * y,
 then x +& g(s'). Hence y = g(s').

 We have shown, then, that if s(y) = uk(Py), then (6) is satisfied. Thus k is dictator
 for g, and g is dictatorial. This completes the proof that any straightforward
 voting scheme with at least three outcomes is dictatorial.

 University of Chicago

 Manuscript received October, 1971.
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